4 Band Color Coding Scheme

4 Band Resistor:

When using the 4-band scheme, the bands are always read from the end that has the band closest to it.

A: \quad The $1^{\text {st }}$ and $2^{\text {nd }}$ band represent the first and second digit, respectively
B: \quad The $3^{\text {rd }}$ band represents the power-of-ten multiplier for the first 2 digits
C: \quad The $4^{\text {th }}$ band is the resistors tolerance (how close the resistor is to the stamped value) [If no $4^{\text {th }}$ band is present, the tolerance is assumed to be $\pm 20 \%$]

Number - Color Correlation:

\rightarrow The following colors when used as a $4^{\text {th }}$ band indicate very small tolerance values.

$$
\begin{aligned}
& \text { Violet }= \pm 0.1 \% \\
& \text { Blue }= \pm 0.25 \% \\
& \text { Green }= \pm 0.5 \% \\
& \text { Brown }= \pm 1 \% \\
& \text { Red }= \pm 2 \%
\end{aligned}
$$

Example Find the resistance of the following resistor.

$12 \times 10^{3} \Omega \pm 5 \% \quad \rightarrow \quad 12,000 \Omega$ or $12 \mathbf{k} \Omega \pm 5 \%$
5% of $12,000 \Omega$ is 600Ω.
The actual value of the resistor is somewhere in the range:
$11.4 \mathrm{k} \Omega$ to $12.6 \mathrm{k} \Omega$

5 and 6 Band Color Resistors:

Five and six band resistors contain an extra digit of accuracy (5 \& 6) and additional information about the resistor (6).

