Electric Circuits

Homework Set 12

1. If the voltage across a 7.5 F capacitor is $2 t e^{-3 t} \mathrm{~V}$, find the current and the power.
2. A current of $4 \sin (4 t)$ (in amps) flows through a 5 F capacitor. Find the voltage $v(t)$ across the capacitor given that $v(0)=1 \mathrm{~V}$.
3. The current through a 0.5 F capacitor is $6\left(1-\mathrm{e}^{-t}\right) \mathrm{A}$. Determine the voltage and power at $t=2 \mathrm{~s}$. Assume $v(0)=0$.
4. Determine the equivalent capacitance for each of the following circuits.

(a)

(b)

(c)
5. Find the equivalent capacitance between the terminals a and b in the circuit below. (All capacitances are in $\mu \mathrm{F}$).

6. Find the equivalent capacitance at terminals $a-b$ of the following circuit.

7. In the circuit shown below,

$$
\begin{aligned}
& v(t)=56 e^{-200 t} \quad V, \quad t>0 \\
& i(t)=8 e^{-200 t} m A, t>0
\end{aligned}
$$

a. Find the values of R and C
b. Calculate the time constant τ
c. Determine the time required for the voltage to decay to half of its original value at $t=0$.

8. Find the time constant for the following RC circuit.

9. The switch in the circuit below has been in position A for a long time. Assume the switch moves instantaneously from A to B at $t=0$. Find v for $t>0$.

10. The switch in the following circuit has been closed for a long time, and it opens at $t=0$. Find $v(t)$ for $t \geq 0$.

11. In the circuit shown below,

$$
\begin{aligned}
& v(t)=10 e^{-4 t} \quad V, \quad t>0 \\
& i(t)=0.2 e^{-4 t} \quad A, t>0
\end{aligned}
$$

a. Find R and C
b. Determine the time constant τ
c. Calculate the initial energy in the capacitor
d. Obtain the time it takes to dissipate 50% of the initial energy

12. For the following circuit, find $v_{o}(t)$ for $t>0$. Determine the time necessary for the capacitor voltage to decay to $1 / 3$ of its original value at $t=0$.

13. (a) If the switch in the circuit below has been open for a long time and is closed at $t=0$. Find $v_{o}(t)$.
(b) Suppose the switch has been closed for a long time and is opened at $t=0$. Find $v_{o}(t)$.

14. Consider the circuit shown below. Find $i(t)$ for $t<0$ and $t>0$.

15. The switch in the following circuit has been in position a for a long time. At $t=0$, it moves to position b. Calculate $i(t)$ for all $t>0$.

