Electric Circuits

Homework Set 13

1. The current through a 10 mH inductor is $10 e^{-t / 2} \mathrm{~A}$, find the voltage and power at $t=3 \mathrm{~s}$.
2. An inductor has a linear change in current from 50 mA to 100 mA in 2 ms and induces a voltage of 160 mV . Calculate the inductance value of the inductor.
3. The circuit through a 40 mH inductor is given by,

$$
i(t)= \begin{cases}0, & t<0 \\ t e^{-2 t} m A, & t \geq 0\end{cases}
$$

Find the voltage $v(t)$.
4. Determine the equivalent inductance for the following circuit. Assume all inductors are 10 mH .

5. Find the equivalent inductance between the terminals a and b in the circuit below.

6. Find the equivalent inductance for the following circuit.

7. Find i_{0} in the circuit below.

8. In the circuit at right,

$$
\begin{aligned}
& v(t)=80 e^{-1000 t} \quad V, \quad t \geq 0 \\
& i(t)=5 e^{-1000 t} m A, \quad t \geq 0
\end{aligned}
$$

a. Find R, L and τ
b. Calculate the energy dissipated in the resistor for $0<t<0.5 \mathrm{~ms}$.

9. Calculate the time constant (τ) in the following circuit.

10. Consider the circuit below. Find $v_{o}(t)$ if $i(0)=6 \mathrm{~A}$ and $v(t)=0$.

11. For the circuit below, determine $v_{o}(t)$ when $i(0)=5 \mathrm{~A}$ and $v(t)=0$.

12. For the circuit below, given that $v_{o}(0)=10 \mathrm{~V}$, find v_{o} and v_{x} for $t>0$.

13. Obtain the inductor current for both $t<0$ and $t>0$ in each of the following circuits.

14. Find $v(t)$ for $t<0$ and $t>0$ in the circuit below.

15. For the network shown, find $v(t)$ for $t>0$.

