Electric Circuits

Homework Set 2

1. A lightning bolt with 10 kA strikes an object for $15 \mu \mathrm{~s}$. How much charge is deposited on the object?
2. A rechargeable flashlight battery is capable of delivering 90 mA for about 12 hr .
a. How much charge can it release at that rate?
b. If its terminal voltage is 1.5 V , how much energy can the battery deliver?
3. **If the current flowing through an element is given by:

$$
i(t)= \begin{cases}3 t A, & 0 \leq t<6 s \\ 18 A, & 6 \leq t<10 s \\ -12 A, & 10 \leq t<15 s \\ 0, & t \geq 15 s\end{cases}
$$

Plot the charge stored in the element over the interval $0<\mathrm{t}<20 \mathrm{~s}$.
4. The charge entering the positive terminal of an element is:

$$
q(t)=5 \sin (4 \pi t) m C
$$

while the voltage across the element (plus to minus) is

$$
v(t)=3 \cos (4 \pi t) V
$$

a. Find the power delivered to the element at $\mathrm{t}=0.3 \mathrm{~s}$.
b. Calculate the energy delivered to the element between 0 and 0.6 s .
5. The voltage $v(t)$ across a device and the current $i(i)$ through it are

$$
\begin{aligned}
& v(t)=10 \cos (2 t) V \& \\
& i(t)=20\left(1-e^{-0.5 t}\right) m A
\end{aligned}
$$

Calculate:
a. The total charge in the device at $t=1 \mathrm{~s}$, with $q(0)=0$.
b. The power consumed by the device at $t=1 \mathrm{~s}$.
6. The current $i(t)$ entering the positive terminal of a device and the voltage $v(t)$ across the device are given by:

$$
\begin{aligned}
& i(t)=6 e^{-2 t} m A \& \\
& v(t)=10 \frac{d i}{d t} V
\end{aligned}
$$

a. Find the charge delivered to the device between $t=0$ and $t=2 \mathrm{~s}$.
b. Find an expression for the power absorbed.
c. Determine the energy absorbed between $t=0$ and $t=3 \mathrm{~s}$.
7. The figure below shows a circuit with five elements. If $p_{1}=-205 \mathrm{~W}, p_{2}=60 \mathrm{~W}, p_{4}=45 \mathrm{~W}$, and $p_{5}=$ 30 W , calculate the power absorbed by element $3, p_{3}$.

8. Find the power absorbed by each of the elements in the following circuit.

9. A telephone wire has a current of $20 \mu \mathrm{~A}$ flowing through it. How long (in hrs) does it take for a charge of 15 C to pass through the wire?
10. A lightning bolt carried a current of 2 kA and lasted for 3 ms . How many coulombs of charge were contained in the lightning bolt?
11. The following graph shows the power consumption of a certain household in 1 day.

Calculate:
a. The total energy consumed in kWh
b. The average power over the total 24 hour period
12. The graph below represents the power drawn by an industrial plant between 8:00 and 8:30 am.

Calculate the total energy in MWh consumed by the plant.
13. A battery may be rated in ampere-hours (Ah). A lead-acid battery is rated at 160 Ah .
a. What is the maximum current it can supply for 40 h ?
b. How many years will it last if it is discharged at a rate of 1 mA ?
14. A 12-V battery requires a total charge of 40 Ah during recharging. How many joules are supplied to the battery?
15. How much energy (in kWh) does a 10-hp motor deliver in 30 minutes? Assume that $1 \mathrm{hp}=746 \mathrm{~W}$.
16. A 600-W TV receiver is turned on for 4 h with nobody watching it. If electricity costs 10 cents $/ \mathrm{kWh}$, how much money is wasted?

Energy Usage (kWh)

Determine the top 6 electrical items you use on a regular basis during the week. List the items, their power rating (somewhere on the item or box - may have to find a reasonable value from the web) and the approximate time per week you use it. Calculate the kilowatt-hours (kWh) and cost of usage associated with each item.

Current Average Price per kWh: $\quad \mathbf{\$} 0.12$

Appliance	Power Rating	Usage (/week)	kWh	Cost (/week)

What would be the total monthly fee for just these 6 items?

