Electric Circuits

Homework Set 5

1. Calculate v and i_{x} in the following circuit.

2. Determine V_{o} in the following circuit.

3. Obtain v_{1} through v_{3} in the following circuit.

4. In the circuit below, find I and $V_{a b}$.

5. In the circuit at right, find:
a. I
b. The power dissipated by the resistor
c. The power supplied by each source

6. Determine i_{o} in the following circuit.

7. Find V_{x} in the following circuit.

8. The following circuit is to control the speed of a motor such that the motor draws currents of 5 A , 3 A , and 1 A when the switch is at high, medium, and low positions, respectively. The motor can be modeled as a load resistance of $20 \mathrm{~m} \Omega$. Determine the series dropping resistances R_{1}, R_{2}, and R_{3}.

9. An electric pencil sharpener rated $240 \mathrm{~mW}, 6 \mathrm{~V}$ is connected to a $9-\mathrm{V}$ battery as shown below. Calculate the value of the series-dropping resistor R_{x} needed to power the sharpener.

10. A loudspeaker is connected to an amplifier as shown below. If a 10Ω loudspeaker draws a maximum power of 12 W from the amplifier, determine the maximum power a 4Ω loudspeaker will draw.

11. In a certain application, the circuit below must be designed to meet the following two criteria:
a. $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}=0.05$
b. $R_{\text {eq }}=40 \mathrm{k} \Omega$

If the load resistor, $5 \mathrm{k} \Omega$, is fixed, find R_{1} and R_{2} to meet the criteria.

