Electric Circuits

Homework Set 5

1. Calculate v and i_x in the following circuit.

2. Determine V_o in the following circuit.

3. Obtain v_1 through v_3 in the following circuit.

4. In the circuit below, find I and V_{ab} .

- 5. In the circuit at right, find:
 - a. I
 - b. The power dissipated by the resistor
 - *c*. The power supplied by <u>*each*</u> source

6. Determine i_o in the following circuit.

7. Find V_x in the following circuit.

8. The following circuit is to control the speed of a motor such that the motor draws currents of 5 A, 3 A, and 1 A when the switch is at high, medium, and low positions, respectively. The motor can be modeled as a load resistance of 20 m Ω . Determine the series dropping resistances R_1 , R_2 , and R_3 .

9. An electric pencil sharpener rated 240 mW, 6 V is connected to a 9-V battery as shown below. Calculate the value of the series-dropping resistor R_x needed to power the sharpener.

10. A loudspeaker is connected to an amplifier as shown below. If a 10 Ω loudspeaker draws a maximum power of 12 W from the amplifier, determine the maximum power a 4 Ω loudspeaker will draw.

- 11. In a certain application, the circuit below must be designed to meet the following two criteria:
 - a. $V_o/V_s = 0.05$
 - b. $R_{eq} = 40 \text{ k}\Omega$

If the load resistor, 5 k Ω , is fixed, find R_1 and R_2 to meet the criteria.

