Spherical Unit Vectors in relation to Cartesian Unit Vectors $\hat{\mathbf{r}}$, $\hat{\mathbf{\theta}}$, $\hat{\mathbf{\phi}}$ can be rewritten in terms of $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ using the following transformations: $$\hat{\mathbf{r}} = \sin\theta\cos\varphi\hat{\mathbf{x}} + \sin\theta\sin\varphi\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}$$ $$\hat{\mathbf{\theta}} = \cos\theta\cos\varphi\hat{\mathbf{x}} + \cos\theta\sin\varphi\hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}}$$ $$\hat{\mathbf{\phi}} = -\sin\varphi \hat{\mathbf{x}} + \cos\varphi \hat{\mathbf{y}}$$ **NOTICE:** Unlike $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$; $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ are **NOT** uniquely defined! The game can be played in reverse to find \hat{x} , \hat{y} , \hat{z} in terms of \hat{r} , $\hat{\theta}$, $\hat{\phi}$: $$\hat{\mathbf{x}} = \sin\theta\cos\varphi\hat{\mathbf{r}} + \cos\theta\cos\varphi\hat{\mathbf{\theta}} - \sin\varphi\hat{\mathbf{\phi}}$$ $$\hat{\mathbf{y}} = \sin\theta\sin\varphi\hat{\mathbf{r}} + \cos\theta\sin\varphi\hat{\mathbf{\theta}} + \cos\varphi\hat{\mathbf{\phi}}$$ $$\hat{\mathbf{z}} = \cos\theta \hat{\mathbf{r}} - \sin\theta \hat{\mathbf{\theta}}$$