Collisions

In every collision involving a closed system:

1) Conservation of momentum is observed

2) Conservation of total Energy is observed

There are 2 types of collisions:		
1) Elastic	(KE is conserved)	$\Delta KE = 0$
2) Inelastic	(KE is NOT conserved)	$\Delta KE \neq 0$

For inelastic collisions, the missing KE goes to heat, deforming, friction ...

Elastic Collision

Ex.

Consider 2 objects of mass m_1 and m_2 colliding elastically. Let m_1 have an initial velocity and m_2 be initially at rest.

What are the final velocities of m_1 and m_2 if:

a) $m_1 = m_2$ b) $m_1 >> m_2$ c) $m_1 << m_2$

From Conservation of momentum

$$p_{i} = p_{f}$$

$$m_{1}v_{1i} + m_{2}v_{2i} = m_{1}v_{1f} + m_{2}v_{2f}$$

$$m_{1}v_{o} = m_{1}v_{1f} + m_{2}v_{2f}$$

From Conservation of 'Mechanical' Energy

$$E_{i} = E_{f}$$

$$\frac{1}{2}m_{1}v_{1i}^{2} + \frac{1}{2}m_{2}v_{2i}^{2} = \frac{1}{2}m_{1}v_{1f}^{2} + \frac{1}{2}m_{2}v_{2f}^{2}$$

$$m_{1}v_{o}^{2} = m_{1}v_{1f}^{2} + m_{2}v_{2f}^{2}$$

Combining the momentum and energy expressions and using a lot of algebra, we find that

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_o$$
$$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_o$$

From these expressions, we can determine the motion of the system based on the initial velocity of m_1 and the ratio of the masses.

 m_2

<i>a</i>) $m_1 = m_2$	(2 pool balls)
$v_{1i} = v_o$	$v_{1f} = 0$
$v_{2i} = 0$	$v_{2f} = v_o$
Before: $m_1 \longrightarrow m_1$	
After:	mı

c) $m_1 \ll m_2$ (ping pong ball hitting a stationary bowling ball) $v_{1i} = v_o$ (reverses direction)

$$v_{2i} = 0 \qquad \qquad v_{2f} \approx 0$$

Note: m_2 will actually move if m_1 is not $\ll m_2$.

Ex.

Consider 2 objects of mass m_1 and m_2 colliding elastically. Let m_1 have an initial velocity toward m_2 and m_2 have an initial velocity toward m_1 .

What are the final velocities of m_1 and m_2 in terms of v_{1i} and v_{2i} ?

From Conservation of momentum

$$p_i = p_f$$

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$
 (minus signs for v will be added later)

From Conservation of 'Mechanical' Energy

$$E_{i} = E_{f}$$

$$\frac{1}{2}m_{1}v_{1i}^{2} + \frac{1}{2}m_{2}v_{2i}^{2} = \frac{1}{2}m_{1}v_{1f}^{2} + \frac{1}{2}m_{2}v_{2f}^{2}$$

After combining the 2 expressions and much algebra, we get:

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2i}$$
$$v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) v_{2i}$$

Note: If $v_{2i} = 0$, we get back our previous examples expressions for the final velocities:

$$v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1i} \qquad v_{2f} = \left(\frac{2m_1}{m_1 + m_2}\right) v_{1i}$$

What are the final velocities of m_1 and m_2 if $v_o > |-v'_o|$ &:

- a) $m_1 = m_2$ b) $m_1 >> m_2$ c) $m_1 << m_2$
- a) $m_1 = m_2$ (2 pool balls) $v_{1i} = v_o$ $v_{1f} = -v'_o$ $v_{2i} = -v'_o$ $v_{2f} = v_o$ (reverses direction)

After:

- b) $m_1 \gg m_2$ (bowling ball hitting a slow moving ping pong ball) $v_{1i} = v_o$ $v_{1f} \approx v_o$

 - $v_{2i} = -v'_o$ $v_{2f} \approx 2v_o + v'_o$ (reverses direction)

Inelastic Collision

Ex.

Consider 2 objects of mass m_1 and m_2 colliding inelastic-ly. Let m_1 have an initial velocity and m_2 be initially at rest and afterward, they both move stuck together with the same velocity.

From Conservation of momentum

$$p_i = p_f$$
$$m_1 v_{1i} = (m_1 + m_2) v_f$$

From Conservation of 'Mechanical' Energy

$$E_{i} = E_{f}$$

$$\frac{1}{2}m_{1}v_{1i}^{2} = \frac{1}{2}(m_{1} + m_{2})v_{1f}^{2}$$

Combining these 2 expressions and after a little algebra:

$$\frac{\left(m_1 + m_2\right)}{m_1} v_f^2 = \left(m_1 + m_2\right) v_{1f}^2$$

→ $m_1 + m_2 = m_1$ This statement is False!!!

Ex.

Let $m_1 = m$ & $m_2 = 2m$

From the previous expression, this would yield

$$m + 2m = m$$

 $3m = m$?!?!?
 $3 = 1$

This means that KE was **NOT** conserved in the *inelastic* collision. The problem could be fixed using <u>conservation of 'total' energy</u>:

$$\frac{1}{2}m_1 v_{1i}^2 = \frac{1}{2}(m_1 + m_2)v_{1f}^2 + E_{loss}$$

Now we would have to come up with some way to represent E_{loss} .