Moment of Inertia

Uniform solid cylinder rotating about its long axis which is centered on the z -axis

$$
\begin{aligned}
& \mathrm{V}_{c y l}=\pi r^{2} h=\pi r^{2} L \\
& \Rightarrow \quad d \mathrm{~V}=2 \pi r L d r \\
& \quad(\text { for tall dr ring })
\end{aligned}
$$

$$
\begin{aligned}
& I_{z}=\int \rho r^{2} d V \\
& \\
& \quad=\int_{0}^{R}(2 \rho \pi L) r^{3} d r \\
& \quad=2 \rho \pi L \int_{0}^{R} r^{3} d r \\
& \quad=2 \rho \pi L\left(\frac{1}{4} R^{4}\right) \\
& \quad=\frac{1}{2} \rho \pi L R^{4}
\end{aligned}
$$

* If we want to reduce our answer to an expression that only includes M \& R.

Using $\rho=\frac{M}{V}$ for the total cylinder and the value for V for a cylinder

$$
\rho=\frac{M}{\pi \mathrm{r}^{2} \mathrm{~L}}
$$

$\Rightarrow \quad I_{z}=\frac{1}{2}\left(\frac{M}{\pi R^{2} L}\right) \pi L R^{4}$
$I_{z}=\frac{1}{2} M R^{2}$

