Relating Angular Motion and Linear Motion Models

Consider:

Linear/Angular Speed:

For a given point P , there is a tangential linear velocity (\vec{v}) at time t. At some time Δt later, the point has rotated through some angle $\Delta \theta$. If $\Delta \theta$ is small, we can approximate the arc length Δs with a linear displacement Δl.

Using the definitions of speed and angular speed:

$$
v=\frac{\Delta l}{\Delta t} \quad \& \quad \omega=\frac{\Delta \theta}{\Delta t}
$$

and equating through Δt, we get:

$$
\frac{\Delta l}{v}=\frac{\Delta \theta}{\omega}
$$

Solving for v we get:

$$
v=\omega \frac{\Delta l}{\Delta \theta}
$$

In the limit as $\Delta \theta \rightarrow 0, \Delta \theta \rightarrow d \theta$ and $\Delta l \rightarrow d l$

$$
v=\omega \frac{d l}{d \theta}
$$

From $\theta=\frac{s}{r}$ and noting that r is constant:

$$
d \theta=\frac{1}{r} d s \quad \rightarrow \quad r=\frac{d s}{d \theta}
$$

In our approximation, $d s=d l$

$$
\Rightarrow \quad r=\frac{d l}{d \theta}
$$

\&

$$
v=\omega r \quad \text { or } \quad \omega=\frac{v}{r}
$$

Linear/Angular acceleration:

Using $\quad a=\frac{d v}{d t}$ and substituting in $v=\omega r$

$$
a=\frac{d(\omega r)}{d t}=r \frac{d \omega}{d t} \quad \text { but } \quad \alpha=\frac{d \omega}{d t}
$$

$\rightarrow \quad a=r \alpha$

Centripetal acceleration:

Using $\quad a_{r}=\frac{v^{2}}{r}$ and substituting in $v=\omega r$

$$
a_{r}=\frac{(\omega r)^{2}}{r}
$$

$\Rightarrow \quad a_{r}=r \omega^{2}$

