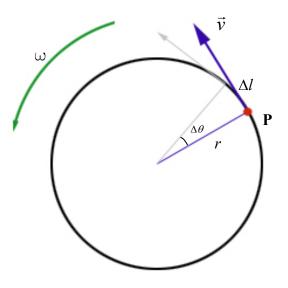
Relating Angular Motion and Linear Motion Models

Consider:



Linear/Angular Speed:

For a given point P, there is a tangential linear velocity (\vec{v}) at time t. At some time Δt later, the point has rotated through some angle $\Delta \theta$. If $\Delta \theta$ is small, we can approximate the arc length Δs with a linear displacement Δl .

Using the definitions of speed and angular speed:

$$v = \frac{\Delta l}{\Delta t}$$
 & $\omega = \frac{\Delta \theta}{\Delta t}$

and equating through Δt , we get:

$$\frac{\Delta l}{v} = \frac{\Delta \theta}{\omega}$$

Solving for v we get:

$$v = \omega \frac{\Delta l}{\Delta \theta}$$

In the limit as $\Delta \theta \rightarrow 0$, $\Delta \theta \rightarrow d\theta$ *and* $\Delta l \rightarrow dl$

$$v = \omega \frac{dl}{d\theta}$$

$$\begin{cases} From \ \theta = \frac{s}{r} \text{ and noting that } r \text{ is constant:} \\ d\theta = \frac{1}{r} ds \quad \Rightarrow \quad r = \frac{ds}{d\theta} \end{cases}$$

In our approximation, ds = dl

$$\Rightarrow \qquad r = \frac{dl}{d\theta}$$

k

$$v = \omega r \quad or \quad \omega = \frac{v}{r}$$

Linear/Angular acceleration:

Using
$$a = \frac{dv}{dt}$$
 and substituting in $v = \omega r$
 $a = \frac{d(\omega r)}{dt} = r\frac{d\omega}{dt}$ but $\alpha = \frac{d\omega}{dt}$

$$\rightarrow$$
 $a = r\alpha$

Centripetal acceleration:

Using
$$a_r = \frac{v^2}{r}$$
 and substituting in $v = \omega r$
 $a_r = \frac{(\omega r)^2}{r}$

 $\Rightarrow a_r = r\omega^2$