Cars Traveling Around a Banked Curve (no friction)

NOTE: In these types of problems, always choose a coordinate system such that x is *parallel* or *antiparallel* to a_r .

Ex.

Find the exact speed a car of mass m traveling along a banked curve (whose path is the shape of a circle of radius r) must have in order to make the curve without sliding **up** or **down** the incline.

Determine the motion in each direction using Newton's 2nd law and the force diagram.

$\sum F_x = -ma_r$	$\sum F_y = 0$
$-N_x = -ma_r$	$N_y - W = 0$

Substituting & solving for the Normal Force:

Equating the two expressions for the Normal force:

$$\frac{mv^2}{r\sin\theta} = \frac{mg}{\cos\theta}$$
$$v^2 = \frac{rg\sin\theta}{\cos\theta}$$
$$v = \sqrt{rg\tan\theta}$$

In terms of the angle: $\tan \theta = \frac{v^2}{rg}$ W/o friction, this is the restriction on the speed of the car to go around a banked curve without sliding up or down the incline.

If $v_{car} > v$, the car will slide <u>up</u> the incline

If $v_{car} < v$, the car will slide <u>down</u> the incline