Complex Force Problem (*No Friction*)

A small block of mass *m* is sits on an incline of mass *M* and is free to move. A force pushes on the large incline accelerating it forward. What is the magnitude of the force required to keep the small block from sliding up or down the incline?

NOTE: Since *m* does not move up or down the incline while *M* is in motion, this implies that m and M both have the same horizontal velocity $\&$ acceleration.

Force Diagram

From the Force Diagram, we can see that:

$$
w_{2x} = 0
$$

\n
$$
W_{2y} = -mg
$$

\n
$$
N_{2y} = N_2 \cos \theta
$$

\n
$$
N_{2y} = N_2 \cos \theta
$$

*** Forces acting on the** *m* **system:**

$$
\sum F_{2x} = ma_{2x}
$$

\n
$$
N_{2x} + w_{2x} = ma_{2x}
$$

\n
$$
N_{2y} + w_{2y} = 0
$$

\n
$$
N_{2y} + w_{2y} = 0
$$

\n
$$
N_{2} \cos \theta - mg = 0
$$

\n
$$
N_{2} \cos \theta - mg = 0
$$

$$
N_2 = \frac{ma_{2x}}{\sin \theta} \qquad N_2 = \frac{mg}{\cos \theta}
$$

Setting equal:

$$
\frac{ma_{2x}}{\sin \theta} = \frac{mg}{\cos \theta}
$$
\n
$$
a_{2x} = g \frac{\sin \theta}{\cos \theta} \qquad \Rightarrow \qquad a_{2x} = g \tan \theta
$$

n the *M* **system: * Forces acting o**

 $\sum F_{1y} = 0$ (*no motion in the y direction*) $\sum F_{1x} = Ma_{1x}$ $\sum F_{1y} = 0$ $F + N_{1x} + w_{1x} - N_{2x} = Ma_{1x}$ $N_{1y} - w_{1y} - N_{2y} =$ $N_{1y} - W_{1y} - N_{2y} = 0$

From the Force Diagram, we can see that:

 $N_{1x} = 0$ $W_{1x} = 0$

&

in the opposite direction as the normal force acting on *M* due to *m* $(-N_2)$. From Newton's 3^{rd} Law, the normal force acting on *m* due to $M(N_2)$ is equal and

 $N_{2x} = -N_{2x}$ & $N_{2y} = -N_{2y}$ In system *m* In system *M* In system *M* In system *M* *Substituting*:

$$
F - N_2 \sin \theta = Ma_{1x}
$$

\n
$$
N_{1y} - Mg - N_2 \cos \theta = 0
$$

\n
$$
N_{1y} = Mg + N_2 \cos \theta
$$

\n
$$
N_{1y} = Mg + N_2 \cos \theta
$$

Since the 2 blocks have the same horizontal acceleration:

$$
|a_{1x}| = |a_{2x}| = a
$$

 \rightarrow

Combining this constraint with our expression for F, $a_{2x} = g \tan \theta$ and $N_2 = \frac{mg}{\cos \theta}$, we get:

$$
F = Mg \tan \theta + \left(\frac{mg}{\cos \theta}\right) \sin \theta
$$

$$
F = Mg \tan \theta + mg \left(\frac{\sin \theta}{\cos \theta}\right)
$$

$$
F = Mg \tan \theta + mg \tan \theta
$$

$$
F = (M + m)g \tan \theta
$$