Gravity of the Earth

What is the magnitude of the acceleration due to the gravity of the earth on an object of mass m near its surface?

$$
\begin{array}{ll}
m_{e}=5.96 \times 10^{24} \mathrm{~kg} & \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
r_{e}=6.37 \times 10^{6} \mathrm{~m} & m=\text { mass of the object }
\end{array}
$$

From Newton's Law of Gravitation and Newton's $2^{\text {nd }}$ Law,

$$
F_{\text {earth on } m}=-\frac{G m_{e} m}{r_{e}^{2}}=-m a
$$

$\rightarrow \quad a=\frac{G m_{e}}{r_{e}{ }^{2}} \quad$ acceleration of m due to m_{e} a distance r_{e} away
$\left\{\begin{array}{l}\text { Notice this expression doesn't contain the mass of the object at all! } \\ * \text { Is the magnitude of this observed acceleration different for different masses? }\end{array}\right.$
No, it is the same for any m is since there is no m term in the expression for a

$$
\begin{aligned}
& a=\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.96 \times 10^{24} \mathrm{~kg}\right)}{\left(6.37 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& a \approx 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \equiv g \quad \begin{array}{l}
\mathrm{g} \text { is what we call the acceleration due to 'the' gravity of the earth. } \\
\begin{array}{l}
{[\text { In general, } g \text { can represent the acceleration due to gravity of any massive }} \\
\text { object.] }
\end{array}
\end{array}
\end{aligned}
$$

Therefore, the earth exerts an attractive force on any object of mass m near its surface causing it to accelerate at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

