Kinematic Equations for Linear Motion

(For constant acceleration ONLY)

- ** To select the appropriate equation to solve a particular problem:
 - 1) List what quantities are given (will be 3)
 - 2) List what is being asked for (will be 1).
 - 3) Find the equation in the table that contains all 4 involved quantities.

Equation	Involved Quantities	Unneeded Quantity
$1) v = v_o + at$	v_o, v, a, t	Δx
$2) v^2 = v_o^2 + 2a\Delta x$	$\Delta x, v, v_o, a$	t
$3) \Delta x = v_o t + \frac{1}{2}at^2$	$\Delta x, v_o, a, t$	v
$4) \Delta x = \frac{1}{2}(v + v_o)t$	$\Delta x, v, v_o, t$	а
$5) \Delta x = vt - \frac{1}{2}at^2$	$\Delta x, v, a, t$	v_o

^{**} $\Delta x = (x - x_0)$

- ** These equations work for motion in ANY one direction (x, y, or z)
- ** If Δx also represents the *total* distance in *only* 1 direction, you can replace Δx with d (for distance) and then think of v and v_o in terms of speed rather than velocity