## Kinematic Equations for Linear Motion

 (For constant acceleration ONLY)** To select the appropriate equation to solve a particular problem:

1) List what quantities are given - (will be 3 )
2) List what is being asked for - (will be 1 ).
3) Find the equation in the table that contains all 4 involved quantities.

| Equation | Involved <br> Quantities | Unneeded <br> Quantity |
| :--- | :--- | :---: |
| 1) $v=v_{o}+a t$ | $v_{o}, v, a, t$ | $\Delta x$ |
| 2) $v^{2}=v_{o}^{2}+2 a \Delta x$ | $\Delta x, v, v_{o}, a$ | $t$ |
| 3) $\Delta x=v_{o} t+\frac{1}{2} a t^{2}$ | $\Delta x, v_{o}, a, t$ | $v$ |
| 4) $\Delta x=\frac{1}{2}\left(v+v_{o}\right) t$ | $\Delta x, v, v_{o}, t$ | $a$ |
| 5) $\Delta x=v t-\frac{1}{2} a t^{2}$ | $\Delta x, v, a, t$ | $v_{o}$ |
| 2 |  |  |

** $\Delta x=\left(x-x_{o}\right)$
** These equations work for motion in ANY one direction ( $x, y$, or $z$ )
** If $\Delta x$ also represents the total distance in only 1 direction, you can replace $\Delta \boldsymbol{x}$ with $d$ (for distance) and then think of $v$ and $v_{o}$ in terms of speed rather than velocity

