Kinematic Equations for Rotational Motion

 (For constant angular acceleration ONLY)** To select the appropriate equation to solve a particular problem:

1) List what quantities are given - (will be 3)
2) List what is being asked for - (will be 1).
3) Find the equation in the table that contains all 4 involved quantities.

Equation	Involved Quantities	Unneeded Quantity
1) $\omega_{f}=\omega_{i}+\alpha t$	$\omega_{i}, \omega_{f}, \alpha, t$	$\Delta \theta$
2) $\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$	$\Delta \theta, \omega_{f}, \omega_{i}, \alpha$	t
3) $\Delta \theta=\omega_{i} t+\frac{1}{2} \alpha t^{2}$	$\Delta \theta, \omega_{i}, \alpha, t$	ω_{f}
4) $\Delta \theta=\frac{1}{2}\left(\omega_{f}+\omega_{i}\right) t$	$\Delta \theta, \omega_{f}, \omega_{i}, t$	α
5) $\Delta \theta=\omega_{f} t-\frac{1}{2} \alpha t^{2}$	$\Delta \theta, \omega_{f}, \alpha, t$	ω_{i}

** $\Delta \theta=\left(\theta_{f}-\theta_{i}\right)$
** These equations work for motion about ANY axis of rotation (x, y, or z-or some combination)
** If $\Delta \theta$ also represents the total angular displacement about only 1 axis, you can replace $\Delta \theta$ with θ and then think of ω_{f} and ω_{i} in terms of angular speed rather than angular velocity

