Swinging Pendulum

\[a(\theta) = l \cos \theta \]
\[y = l - a(\theta) = l - l \cos \theta = l(1 - \cos \theta) \]
\[\rightarrow \quad y_o = l(1 - \cos \theta_o) \]
\[y = l(1 - \cos \theta) \]

\[\begin{align*}
(\theta = 0) & \quad (v_i = 0) \\
y_o & \quad (U = 0)
\end{align*} \]

a) What is the tangential speed of mass \(m \) as a function of \(y \)?

\[E_i = E_f \]
\[\frac{1}{2} m v_i^2 + m g y_o = \frac{1}{2} m v^2 + m g y \]
\[0 + m g y_o = \frac{1}{2} m v^2 + m g y \]
\[v = \sqrt{2 g (y_o - y)} \]

b) What is the tangential speed of mass \(m \) as a function of \(\theta \)?

\[v = \sqrt{2 g ([l(1 - \cos \theta_o)] - [l(1 - \cos \theta)])} \]
\[v = \sqrt{2 g l (1 - \cos \theta_o - 1 + \cos \theta)} \]
\[v = \sqrt{2 g l (\cos \theta - \cos \theta_o)} \]

c) What is the tangential speed of mass \(m \) at \(\theta = 0 \)?

\[v = \sqrt{2 g l (1 - \cos \theta_o)} \]