Visual Representation of the Dot Product (*Scalar Product*)

This shows that the dot product is the amount of \mathbf{A} in the direction of \mathbf{B} times the magnitude of \mathbf{B}. This is extremely useful if you are interested in finding out how much of one vector is projected onto another or how similar 2 vectors are in direction. The following 5 cases summarize the possible interpretations of the dot product.

CASE I
$\mathbf{A} \cdot \mathbf{B} = AB$
The interpretation is that all of \mathbf{A} is projected onto \mathbf{B}
(both \mathbf{A} and \mathbf{B} are in the same direction - *parallel*)

\[
\theta = 0 \quad \rightarrow \quad \cos \theta = 1
\]

CASE II
$\mathbf{A} \cdot \mathbf{B} = C$
$0 < C < AB$
The interpretation is some of \mathbf{A} is projected onto \mathbf{B}
(\mathbf{A} and \mathbf{B} point in the same general direction, *how much depends on the value of C*)

\[
\theta < \frac{\pi}{2} \quad \rightarrow \quad 0 < \cos \theta < 1
\]

CASE III
$\mathbf{A} \cdot \mathbf{B} = 0$
The interpretation is that none of \mathbf{A} is projected onto \mathbf{B}
(\mathbf{A} and \mathbf{B} are *perpendicular*)

\[
\theta = \frac{\pi}{2} \quad \rightarrow \quad \cos \theta = 0
\]
CASE IV \(\mathbf{A} \cdot \mathbf{B} = -D \quad -AB < -D < 0 \)

The interpretation is some of A is projected onto -B
(A and B point in opposite directions, how much depends on the value of -D)

\[\frac{\pi}{2} < \theta < \pi \quad \rightarrow \quad -1 < \cos \theta < 0 \]

CASE V \(\mathbf{A} \cdot \mathbf{B} = -AB \) The interpretation is that all of A is projected onto -B
(A and B are anti-parallel: \(\parallel \) but in opposite directions)

\[\theta = \pi \quad \rightarrow \quad \cos \theta = -1 \]